Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Virologie ; 26(2):181-182, 2022.
Article in English | EMBASE | ID: covidwho-1913255

ABSTRACT

The binding of the SARS-CoV-2 spike to angiotensin-converting enzyme 2 (ACE2) promotes virus entry into the cell. Targeting this interaction represents a promising strategy to generate antivirals. By screening a phage-display library of biosynthetic protein sequences build on a rigid alpha-helicoidal HEAT-like scaffold (named αReps), we selected candidates recognizing the spike receptor binding domain (RBD). Two of them (F9 and C2) bind the RBD with affinities in the nM range, displaying neutralisation activity in vitro and recognizing distinct sites, F9 overlapping the ACE2 binding motif. The F9-C2 fusion protein and a trivalent -Rep form (C2-foldon) display 0.1 nM affinities and EC50 of 8- 18 nM for neutralization of SARS-CoV-2. In hamsters, F9-C2 instillation in the nasal cavity before or during infections effectively reduced the replication of a SARS-CoV-2 strain harbouring the D614G mutation in the nasal epithelium and pathogenicity. Furthermore, F9-C2 and/or C2- foldon effectively neutralized SARS-CoV-2 variants (including delta and omicron variants) with EC50 values ranging from 13 to 32 nM. With their high stability and their high potency against SARS-CoV-2 variants, αReps provide a promising tool for SARS-CoV-2 therapeutics to target the nasal cavity and mitigate virus dissemination in the proximal environment.

2.
J Virol Methods ; 297: 114252, 2021 11.
Article in English | MEDLINE | ID: covidwho-1340750

ABSTRACT

In the context of the COVID-19 pandemic, virus collections such as EVA-GLOBAL play a key role in the supply of viruses and related products for research. Freeze-drying techniques for viruses represent a method of choice for the preservation of strains and their distribution without the need for a demanding cold chain. Here, we describe an optimised lyophilisation protocol usable for SARS-CoV-2 strains that improves preservation and thermostability. We show that sucrose used as an adjuvant represents a simple and efficient stabilizer providing increased protection for long-term preservation and shipment of the virus under different climatic conditions.


Subject(s)
COVID-19 , SARS-CoV-2 , Freeze Drying , Humans , Pandemics , Preservation, Biological
SELECTION OF CITATIONS
SEARCH DETAIL